


Contents

* Docker key concepts
* Container
* Image
* Dockerfile
* Registry
* Volume

e Network

e Docker in action
* Running a container
e Common parameters

e Building a container
e Github + Docker hub

 Docker Swarm Mode key concepts

Swarm
Node

Service & Task

e Docker Swarm Mode in action

Setting up a swarm
Creating a service
Examining state

Updating a service




Docker: Container

* QOperating system —level virtualization, LXC
* Limited resources
* Sandbox —like operation

 Kernel dependent
* Managed by Docker process

* Single process dOC kQ r
* Not a method of added security!



Docker: Image

Containers are built from images

Images consist of layers, that are also images
* Operating system

* Installations 1 .. N

e Customization and configuration

Built with recipes called Dockerfiles

Tagged to tell where, what and which version

references
parent




Docker: Dockerfile

Build

—>

Dockerfile Image

* File named ‘Dockerfile’
 Contains commands to create an image
* Usually extends another image

e Common commands
e FROM: Which image to base on
* RUN: Run commands
* COPY: Copy files, e.g. configuration
e CMD: What command should start the single process



Docker: Registry \
exus

* Place to store Docker images

* Open to everyone artifaCthq

* hub.docker.com

* Open Source, private
* Docker registry container

e Nexus 3




Docker: Volume

 Docker images are by philosophy, immutable
* Volumes provide current state
 Volumes can be used for data persistence

e Volumes are linked to Docker containers
° -V

 Also consider data containers
* File permission and structure advantages




Docker: Network

e Containers can access host network

* Containers access each other via Docker networking
» Default: All containers belong to bridge

* Containers must publish ports to be available outside the Docker
network
* -p external port:container_port

e New networks can be defined

* Docker swarm automatic DNS requires an explicit overlay network!



Docker Swarm: Swarm

e A container orchestration tool
* Consists of servers, nodes

 Manages desired state of services

* Abstracts the concept of server to a pool of resources
 Networks span the whole swarm

* Provides common tools for updates, maintenance, etc




Docker Swarm: Node

* Asingle server joined into a Swarm
 Manager, Worker or both
 Managers check and manipulate Swarm state

 Swarm commands are only ran on Manager nodes
* Worker nodes host containers

* High availability poses constraints on number of nodes
* https://docs.docker.com/swarm/multi-manager-setup/




Docker Swarm: Service

/111

* Definition of content managed by Swarm
* Defined similarly to a single container
* Discoverable by it’s name

 Hides actual location of containers

* Scalable
* 2 logstashes today, 20 tomorrow

e Stateful or Stateless




Docker Swarm: Tasks

* |nstances of work to be done by a service
* Docker containers on Worker nodes
* |nherit parameters from the service

* Produce actual capability from the Swarm

/111




Docker in Action: Running a container

 Docker-toolbox for Windows and OS X, native for Linux

e https://www.docker.com/products/docker-toolbox

* https://docs.docker.com/engine/installation/linux/

e docker run -d --name mongo -p 91:27017 -p 92:28017 mongo:3 mongod --rest
* runis the base command, start a container
e -d, detach instead of just running until closed by user
* --name, name of the container, otherwise random
* -p external_port:container_port, exposing ports so external services can use it
* mongo, the name of the image, :3 the tag or version

* mongod —rest, command we wish to run within the container




Docker in Action: Building a container

 Dockerfile and needed files in a folder

docker build . --tag customimage:2
* build, build a container

e --tag, give our image a name customimage and version 2

Often built automatically by Cl

* |In our hands-on, by docker hub

 (Can be copied into a repository with docker push
* https://docs.docker.com/engine/reference/commandline/push/



Docker in Action: Github + Docker hub

* https://github.com/
* Awesome repository

* https://hub.docker.com/
e Largest source of docker containers

* Open to everyone

 Demo




Docker Swarm in action: Setting up

e Docker 1.12 or newer needed

* First manager node
e docker swarm init --advertise-addr <MANAGER-IP>

e Outputs the command to run on worker nodes
* Ports required
e 2377,7946,4789




Docker Swarm in action: Service

* Run on any manager node
* docker service create --replicas 1 --name stash logstash

service create, deploy a service to the Swarm
--replicas 1, run only one task on the collection of workers
--name, name our service stash

logstash, the name of our container to base the service on
* Omitting the tag will default to :latest




Docker Swarm in action: Examining

e |List services

* docker service Is
* Examine a service

* docker service ps <servicename>
* Examine swarm

* docker info

 docker node Is




Docker Swarm in action: Updating

* Run on any manager node
* docker service update --image redis:3.0.7 redis

e service update, update some parameter of a service
* --image, change the image to redis, tag 3.0.7

e redis, the name of the service to update




Exercise: Your first swarm application

* A microservices oriented application running on docker swarm
 Showcases what it is like to build a microservices application

* Focus on planning, understanding and configuring components
 Modularized design, isolated development

* Step by step building




Exercise: Your first swarm application

Version 1: Minimum viable product

Javascript frontend

e Connects to Mongo rest to fetch orders

e Sends orders to Logstash

HAProxy router

e Routes calls based on url to frontend, logstash or mongo

Logstash adapter

* Transforms http post from frontend to mongodb insert

Mongo database
e Receives inserts

* Provides REST api for frontend to fetch from




HAProxy

Frontend

/interface

>

Logstash

\ 4

MongoDB

/ordersDB




Exercise: Your first swarm application

* Version 2: Preparing for load
e Javascript frontend
* HAProxy router

2 Logstash adapters

* Onereceives HTTP post and inputs into RabbitMQ

* One reads from RabbitMQ and inputs into MongoDB
RabbitMQ queue

e Persists messages in case of high load

Mongo database




HAProxy

Frontend

/interface

>

Logstash

MongoDB

<

>

RabbitMQ

v

J/ordersDB

Logstash




Exercise: Your first swarm application

* Version 3: Advanced features

e Javascript frontend

HAProxy router

2 Logstash adapters

RabbitMQ queue

Mongo database

Node backend

e Performs custom logic instead of direct call from frontend to MongoDB

e Use MongolS or other Mongo driver instead of REST




Frontend

HAProxy

/interface

Logstash

Backend

RabbitMQ

/backend

MongoDB

<

Logstash




Optional challenges

* Node-red APl enrichment before MongoDB save
* Persistent storage for MongoDB
 RabbitMQ clustering

* Persistent storage




Documentation links

 Container examples

https://hub.docker.com/r/villevaltonen/

* Container pages

https://hub.docker.com/ /httpd/

https://hub.docker.com/ /haproxy/

https://hub.docker.com/ /logstash/

https://hub.docker.com/ /mongo/

https://hub.docker.com/ /rabbitmaq/

https://hub.docker.com/ /node/




Documentation links

Configuration documentation

HAProxy
* https://cbonte.github.io/haproxy-dconv/

Logstash
* https://www.elastic.co/guide/en/logstash/2.4/index.html|

Usage documentation
MongoDB

* https://docs.mongodb.com/manual/

* http://www.rabbitmqg.com/documentation.html

Searching google for examples is very helpful!
* E.g. ‘logstash http input example’




t

Ol

hig




