REST vs Web Services

TIE-23600 Palvelupohjaiset
jarjestelmat

Taman kalvosetin lahteena on kaytetty julkaisua
Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. 2008. Restful web services
vs. "big"' web services: making the right architectural decision.

http://ramb.ethz.ch/CDstore/www2008/www2008.org/papers/pdf/p805-
pautassoA.pdf

Web Services (WS-*)

* Web Services = "WS-*" = a set of XML-based
standards for implementing SOA
— SOAP as message format
— WSDL as service contract definition language
— Other WS-* standards for other things

REST

* Architectural style defined by six constraints
— Client-server
— Stateless
— Cacheable
— Layered system
— Uniform interface
— Code-on-demand (optional)
¢ HTTP as the uniform interface
— URI
— GET/POST/PUT/DELETE
— MIME representations
— Hyperlinks between resources

WS-*

OrderManagementService

+ getOrders()

+ submitOrder()

+ getOrderDetails()

+ getOrdersForCustomers()
+ updateOrder()

+ addOrderltem()

+ cancelOrder()

CustomerManagementService

+ getCustomers()

+ addCustomer()

+ getCustomerDetails()
+ updateCustomer()

+ deleteCustomer()

The interfaces are specific to the task.
The interfaces define the services’ application protocol.

[From: http://www.infoq.com/articles/rest-introduction)

[Fram: http://www.infog.com/articles/rest-introduction]

Jorders
OrderManagementService GET - list all orders
------ PUT - unused
H POST - add a new order
+ getOrders() : DELETE - unused
+ submitOrder() ' Jorders/(id}
+ getOrderDetails() ! GET - gel order delails
+ getOrdersForCustomers() e ;“);% ﬁ?ﬁ;«da
+ updateOrder() E DELETE - cancel order
+ addOrderltem() = !
wint .
+ cancelOrder() F‘le:a::cee ! : Jeustomers
GEF—‘] GET - list all customers
PUT <t---4----4 PUT - unused
POST ' POST - add new customer
OELETE ' DELETE - unused
CustomerManagementService i Jcustomers/{id}
' GET - get customer details
L~~~ PUT - update customer
+ getCustomers() I POST - unused
+addCustomer() \ DELETE - delete customer
+ getCustomerDetails()] o
Il ustomer: lers
+ updateCustomer() \ GET - get all orders for customer
+ deleteCustomer() .| PUT - unused
POST - add order
DELETE - cancel all customer orders
Web service: a client needs to be coded RESTful service: a client uses URI hierarchy

against this particular interface and HTTP to access the resources

Popularity (SOAP vs REST)

Aiheet Tilea o
Representational state tra...
Hakumaaréat ajan mittaan v/ Ennuste
IF\V\-
\\
\Va \
\
“V\a
Vi oo 8
v \\’\“M\» . = /_,\,\/—-.
M St A S A bz W

A ity N A

l _\,“_‘,--,._,-___‘,_,,—~/ AN AN N /\\
—~— G
——
PRP Y o g

WS-* strengths

Protocol transparency and independency

— SOAP messages can be transported over a variety
of protocols, not just HTTP

Machine-processable service contracts

— WSDL

Synchronous and asynchronous interaction
patterns

Tool support

— Hide the complexity of underlying formats

WS-* weaknesses

* Verbosity

— XML processing overhead
* Wide range of standards

— Varying tool support

— Mitigated by WS-I guidelines
* "Complexity”

— Dependency on tools

REST strengths

Leverage well-supported standards
— HTTP, URI, MIME

Lightweight

— No heavy dependendence on tools
Scalability

— Statelessness, cacheable, ...

Multiple message formats

REST weaknesses

¢ Confusion about what is “RESTful”
— Any HTTP APl is not RESTful

* Reliance on HTTP

— Methods other than GET and POST not universally
supported
— GET input data limits
* Very long URIs don’t work everywhere
* How to encode complex data in the URI?

10

In WS-*

HTTP is one possible
transport protocol

HTTP

In RESTful services

* HTTP is the application
protocol

— on top which SOAP messages * GET, POST, PUT, DELETE

can be transported
Only POST

* URI identifies a resource

URI identifies a messaging

endpoint

— Which may contain multiple

operations

11

WS-* design decisions

1. Data modeling
— XML Schema data types
2. Message exchange patterns
— Synchronous or asynchronous
3. Service operations enumeration

— Define the set of operations exposed by the
service

— How to group the operations into services?

12

REST design decisions

1. Resource identification
2. URI design

3. Resource interaction semantics

— Which of the HTTP verbs are applicable to a
given resource?

4. Resource relationships
— HATEOAS

5. Data presentation
— JSON, XML, ...

13

Technology comparison

I N

Transport protocol (many)

Message format SOAP (XML)

Service identification URI, WS-Addressing
Service description WSDL, XML Schema
Security HTTPS, WS-Security
Service composition BPEL, BPMN
Implementation (many)

technology

HTTP
(many)

URI

Textual documentation,
WADL

HTTPS
(mashups)

(many)

14

